Research on magnetic inversion in alternating current magnetic flux leakage testing

Author:

Wang Gang1,Liang Ce1,Song Huadong1,Xiao Qi2,Zhong Yuan1

Affiliation:

1. College of Information Science and Engineering, Northeastern University, Shenyang 110003, China

2. Shenyang Academy of Instrumentation Science Company Ltd, Shenyang 110003, China

Abstract

Defects bring significant security risks to pipelines, which are essential carriers in oil and gas transportation. However, when alternating current magnetic flux leakage (AC-MFL) testing is applied to pipeline defect detection, the morphological reversal of the detection signal under specific parameters has adverse effects on defect identification and quantification. This paper identifies and explains the phenomenon of detection signal morphological reversal in AC-MFL testing, which is defined as magnetic inversion (MI). Based on the AC-MFL testing mechanism, the causes of MI are analysed. The influence of the excitation current frequency, excitation current intensity and defect depth on MI is numerically analysed using the finite element method. The excitation current frequency and the defect depth are important factors causing MI, but the excitation current density is not. MI only occurs when deep defects are detected under low-frequency excitation. The boundary conditions of AC-MFL testing are further clarified.

Publisher

British Institute of Non-Destructive Testing (BINDT)

Subject

Materials Chemistry,Metals and Alloys,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3