Noise recognition of moving parts in a sealed cavity based on the fusion of recognition results and high-dimensional mapping

Author:

Gao Yajie1,Zhang Yuhang2,Liu Yuansong3,Li Chaoran3,Sun Zhigang3,Wang Guotao3

Affiliation:

1. School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China

2. School of Automation, Qingdao University, Qingdao 266000, China

3. School of Electronic Engineering, Heilongjiang University, Harbin 150080, China

Abstract

The detection and identification of noise from moving parts inside a sealed cavity is crucial for ensuring the reliability of sealed equipment. However, traditional noise recognition methods struggle to meet the stringent demands for high detection accuracy. Inspired by the idea of ensemble learning, this paper proposes a noise recognition method that combines recognition results with high-dimensional mapping to enhance the recognition of noise. Firstly, a built noise identification experimental system is used to collect signals. Then, features are filtered and extracted based on acoustic emission principles and signal properties. Ultimately, a new fusion method is devised incorporating recognition results as new features into the original dataset and designing multiple layers of single algorithms based on their individual strengths to enhance the feature extraction capabilities of the algorithm. In the first layer of the fusion algorithm, CatBoost learns from the original dataset and incorporates its recognition results into the dataset. XGBoost then trains on the new dataset as the training set. Finally, the sparse output matrix generated by XGBoost is input into a logistic regression (LR) algorithm for training and prediction. The proposed method is verified by experiments on datasets and the results show that the accuracy of this method is higher than that of a single recogniser. It also performs better than current mature stacking fusion methods and mapping-based fusion methods. This fusion approach is of great significance for improving noise recognition accuracy and for innovating fusion methods.

Publisher

British Institute of Non-Destructive Testing (BINDT)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3