Development and optimisation of low-power magnetic flux leakage inspection parameters for mild steel welds

Author:

Watson J M,Liang C W,Sexton J,Missous M

Abstract

Magnetic particle and other magnetic flux leakage (MFL)-based methods for the detection and evaluation of surfacebreaking flaws in ferromagnetic materials typically use high-strength (≥0.5 T RMS), low-frequency (≤50 Hz) magnetic fields. The rationale behind this is the ready availability of strong permanent magnets and mains power for high-strength electromagnets. This high field strength is needed to saturate the sample and compensate for the relatively low sensitivity of magnetic particle detection media, silicon Hall sensors, coils and other magnetic transducers used in such methods. Consequently, frequencies greater than 50 Hz and applied magnetic fields less than 100 mT strength have not been widely explored for MFL due to the lack of commercially available sensors capable of detecting the leakage fields (typically in the nT and μT range) with adequate versatility to cope with the variations in inspection parameters, such as changes in liftoff, material properties, etc, which are inherent to non-destructive testing and evaluation (NDT&E) settings. In this study, the MFL response of surface-breaking longitudinal cracks from a ground mild steel weld validation sample, within the DC to 1 kHz and 5 mT to 100 mT RMS applied magnetic field operating range, was explored. This was carried out to determine whether any optimal frequency response exists, better accommodating the inherent sample material properties (for example magnetic permeability and electrical conductivity) and MFL mechanism and attributing phenomena such as electromagnetic skin effect and eddy current contributions. Contrary to previous work published in Insight last year, this study found no particular optimal frequency within this operating range, with explanations to justify the disproval of previously reported conclusions about optimal frequencies within this range. Also, the iteratively developed quantitative analysis performed in this study can be used to help further understand the underlying mechanisms of AC MFL and provide best practice regarding the optimisation of MFL.

Publisher

British Institute of Non-Destructive Testing (BINDT)

Subject

Materials Chemistry,Metals and Alloys,Mechanical Engineering,Mechanics of Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3