Complete ensemble empirical mode decomposition with adaptive noise for dynamic response reconstruction of spacecraft structures under random vibration

Author:

Ye Yumei1,Zhang Jingang2,Yang Qiang2,Meng Songhe2,Wang Jun1

Affiliation:

1. e School of Mechanical Technology, Wuxi Institute of Technology, 214121 Wuxi, Jiangsu Province, P R China

2. National Key Laboratory of Science and Technology for National Defence on Advanced Composites in Special Environments, Harbin Institute of Technology, 150001 Harbin, Heilongjiang Province, P R China.

Abstract

The dynamic responses of key regions are critical inputs for the structural life estimation of spacecraft. Response reconstruction methods are needed for structural locations where sensors are not placed due to resource limitations. In this paper, a reconstruction method based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is proposed. CEEMDAN can eliminate the mode-mixing phenomenon of traditional empirical mode decomposition (EMD) during signal decompositions to improve the reconstruction accuracy. The proposed method is applied to the reconstruction of acceleration and strain responses at critical locations of a load-bearing structure under sinusoidal and random vibration loads. Numerical and experimental validation are carried out. The numerical results show that the reconstructions are almost unaffected by the selected white noise levels of CEEMDAN and the locations of measured and targeted points. The experimental results show that compared with traditional EMD, the reconstruction accuracy of CEEMDAN is improved by a maximum of 79.94% with almost no additional computational cost. The proposed reconstruction method shows efficiency and accuracy for a wide range of applications.

Publisher

British Institute of Non-Destructive Testing (BINDT)

Subject

Materials Chemistry,Metals and Alloys,Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3