Simultaneous determination of layer thicknesses in graded layer materials by ultrasonic non-destructive method

Author:

Zhang Chengcheng,Yang Xiaoyu,Luo Guoqiang,Shen Qiang,Zhang Jian

Abstract

Functionally graded materials (FGMs) are widely applied in aerospace, energy, biology and other fields. Simultaneous determination of the thicknesses of all the graded layers is of great importance in evaluating the quality of an FGM. A model is set up to characterise the ultrasonic waves reflected from an FGM composed of thin layers at normal incidence. The reflection spectrum is derived to simultaneously obtain the thicknesses of the various graded layers. To prove the feasibility of the proposed method, it is applied to measure the layer thicknesses of a prepared Al-Ti bi-layered material specimen without delaminations. An inverse algorithm based on the Gauss-Newton method is introduced to determine the thicknesses by comparing the theoretical and measured reflection spectra. The effects of the frequency bandwidth of the transducer on the thickness convergence zones and the thickness measurement results are investigated. The sensitivity of the proposed method to the thickness parameters is studied. The results indicate that the frequency bandwidth plays an important role in the thickness measurement. The relative thickness errors of the Al layer and the Ti layer in this experiment are –5.28% and +2.77% using 5 MHz and 15 MHz transducers. It is concluded that a combination of reflection spectra and inverse techniques can be employed to simultaneously obtain the graded layer thicknesses.

Publisher

British Institute of Non-Destructive Testing (BINDT)

Subject

Materials Chemistry,Metals and Alloys,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3