Ultrasonic metrics for large-area rapid wrinkle detection and classification in composites

Author:

Smith R A,Tayong R B1,Nelson L J1,Mienczakowski M J1,Wilcox P D1

Affiliation:

1. Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, UK

Abstract

Due to their high strength-to-weight ratio, composite materials are now in use in many high-stress applications, particularly where light weight is also a requirement. In these situations, the detrimental knock-down in mechanical strength due to an out-of-plane wrinkle defect can have serious consequences and is the reason for a requirement to rapidly detect any such wrinkles at manufacture. Unfortunately, current ultrasonic inspection techniques used for quality control at manufacture are not sensitive enough to detect these wrinkles above coherent structural noise variations. This paper exploits the ply resonance that is a characteristic of multi-layer structures to generate two new metrics for both detection and classification of out-of-plane wrinkles, due to their perturbations of the ply spacing. These can be measured at every location on a structure using the instantaneous frequency, which is the rate of change of phase in the pulse-echo ultrasonic response. The proposed two new metrics for detection and classification of wrinkles are mean spacing and spacing difference and they can be applied to each waveform in real time, as it is acquired. Use of an analytical model to predict the ultrasonic response of the structure has allowed an understanding of how these metrics will be affected by various wrinkle types and how they can not only detect wrinkles but also classify the type of wrinkle and provide an approximate indication of severity. Three main types of wrinkle are considered: classic wrinkles near the mid-plane of a structure, back-surface wrinkles formed from a resin bulge near the back of a structure and folded wrinkles where several plies can be folded over completely in the bulk of the structure. Both simulations and experimental results demonstrate the effectiveness of these metrics on various types of structure, including carbon-fibre and hybrid carbon/glass-fibre composites with a range of ply thicknesses and wrinkle types.

Publisher

British Institute of Non-Destructive Testing (BINDT)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3