Abstract
In an online monitoring system for an electrified railway, it is important to classify the catenary equipment successfully. The extreme learning machine (ELM) is an effective image classification algorithm and the genetic algorithm (GA) is a typical optimisation method. In this paper,
a coupled genetic algorithm-extreme learning machine (GA-ELM) technique is proposed for the classification of catenary equipment. Firstly, the GA is used to search for optimal features by reducing the initial multi-dimensional features to low-dimensional features. Next, the optimised features
are used as the input to the ELM. The ELM algorithm is then used to classify the catenary equipment. In this process, the impacts of the activation function, the number of hidden layer neurons and different models on the performance of the ELM are discussed in turn. Finally, the proposed method
is compared with traditional methods in terms of classification accuracy and efficiency. Experimental results show that the number of feature dimensions decreases to 58% of the original number and the computational complexity is greatly decreased. Moreover, the reduced features and the few
steps of the ELM improve the classification accuracy and speed. Noticeably, when the performance of the GA-ELM method is compared with that of the ELM method, the classification accuracy rate is 93.33% compared with 85.83% and the time consumption is 2.25 s compared with 8.85 s, respectively.
That is to say, the proposed method not only decreases the number of features but also increases the classification accuracy and efficiency. This meets the needs of a real-time online condition monitoring system.
Publisher
British Institute of Non-Destructive Testing (BINDT)
Subject
Materials Chemistry,Metals and Alloys,Mechanical Engineering,Mechanics of Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献