Classification of catenary equipment based on a coupled genetic algorithm-extreme learning machine method

Author:

Wu Changdong

Abstract

In an online monitoring system for an electrified railway, it is important to classify the catenary equipment successfully. The extreme learning machine (ELM) is an effective image classification algorithm and the genetic algorithm (GA) is a typical optimisation method. In this paper, a coupled genetic algorithm-extreme learning machine (GA-ELM) technique is proposed for the classification of catenary equipment. Firstly, the GA is used to search for optimal features by reducing the initial multi-dimensional features to low-dimensional features. Next, the optimised features are used as the input to the ELM. The ELM algorithm is then used to classify the catenary equipment. In this process, the impacts of the activation function, the number of hidden layer neurons and different models on the performance of the ELM are discussed in turn. Finally, the proposed method is compared with traditional methods in terms of classification accuracy and efficiency. Experimental results show that the number of feature dimensions decreases to 58% of the original number and the computational complexity is greatly decreased. Moreover, the reduced features and the few steps of the ELM improve the classification accuracy and speed. Noticeably, when the performance of the GA-ELM method is compared with that of the ELM method, the classification accuracy rate is 93.33% compared with 85.83% and the time consumption is 2.25 s compared with 8.85 s, respectively. That is to say, the proposed method not only decreases the number of features but also increases the classification accuracy and efficiency. This meets the needs of a real-time online condition monitoring system.

Publisher

British Institute of Non-Destructive Testing (BINDT)

Subject

Materials Chemistry,Metals and Alloys,Mechanical Engineering,Mechanics of Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3