Limited-angle ultrasonic tomography back-projection imaging
-
Published:2021-01-01
Issue:1
Volume:63
Page:20-28
-
ISSN:1354-2575
-
Container-title:Insight - Non-Destructive Testing and Condition Monitoring
-
language:en
-
Short-container-title:insight
Author:
Hoyle C,Sutcliffe M,Charlton P,Mosey S,Cooper I
Abstract
Ultrasonic inspection of through-transmission is limited due to the inability to obtain defect depth information. Loss of signal is used as the only indicator, providing lateral defect information. This is often a problem in ultrasonic inspection. Radiographic acquisition techniques,
where the X-ray source acts as the transmitter and the detector as the receiver, are conceptionally similar to ultrasonic through-transmission. In the latter, the tomography back-projection method is used to reconstruct images of an object that has been subjected to a minimum of 180° of
rotation, to allow for full coverage of the item. In this paper, a novel approach based on back-projection is presented to improve image resolution and defect detectability. Two ultrasonic transducers in through-transmission configuration are utilised to capture data for image processing.
The rotation of the transmitter and receiver is not possible in this set-up and, therefore, the reconstruction relies on the artificial generation of a limited rotation. Two probes are aligned either side of the material and are used to gather the ultrasonic signals. These signals are processed
before the reconstruction algorithm is applied to them. Various processing and imaging reconstruction algorithms are explored, building on the basic back-projection method to obtain images that are better focused. This technique could be used within materials where there are high attenuation
levels and, therefore, traditional pulse-echo is not feasible.
Publisher
British Institute of Non-Destructive Testing (BINDT)
Subject
Materials Chemistry,Metals and Alloys,Mechanical Engineering,Mechanics of Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献