Limited-angle ultrasonic tomography back-projection imaging

Author:

Hoyle C,Sutcliffe M,Charlton P,Mosey S,Cooper I

Abstract

Ultrasonic inspection of through-transmission is limited due to the inability to obtain defect depth information. Loss of signal is used as the only indicator, providing lateral defect information. This is often a problem in ultrasonic inspection. Radiographic acquisition techniques, where the X-ray source acts as the transmitter and the detector as the receiver, are conceptionally similar to ultrasonic through-transmission. In the latter, the tomography back-projection method is used to reconstruct images of an object that has been subjected to a minimum of 180° of rotation, to allow for full coverage of the item. In this paper, a novel approach based on back-projection is presented to improve image resolution and defect detectability. Two ultrasonic transducers in through-transmission configuration are utilised to capture data for image processing. The rotation of the transmitter and receiver is not possible in this set-up and, therefore, the reconstruction relies on the artificial generation of a limited rotation. Two probes are aligned either side of the material and are used to gather the ultrasonic signals. These signals are processed before the reconstruction algorithm is applied to them. Various processing and imaging reconstruction algorithms are explored, building on the basic back-projection method to obtain images that are better focused. This technique could be used within materials where there are high attenuation levels and, therefore, traditional pulse-echo is not feasible.

Publisher

British Institute of Non-Destructive Testing (BINDT)

Subject

Materials Chemistry,Metals and Alloys,Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Limited-angle weighted ultrasonic back-projection imaging with ART algorithm imaging;Insight - Non-Destructive Testing and Condition Monitoring;2021-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3