Semantic segmentation of surface defects of smooth parts based on deep convolutional neural networks

Author:

Hou Huaishu1,Zhang Runze1,Jiao Chaofei1,Zhao Zhifan1,Fang Xinchong1,Li Jinhao1,Xu Dachuan1

Affiliation:

1. School of Mechanical Engineering, Shanghai Institute of Technology, Shanghai 201418, China

Abstract

Machine vision plays an increasingly important role in industrial product quality detection. During processing, scratches, dents and other defects are inevitable on the surface of a smooth part. Although surface defects do not affect the overall performance of the product, their existence is unacceptable when a perfect product is required. The surface defect detection method based on machine vision and deep convolutional neural networks overcomes, to a certain extent, the problem of low detection efficiency, high false detection and missing detection rates in the traditional detection method. In this paper, a multistream semantic segmentation neural network is proposed to identify defects on smooth parts. Taking a seatbelt buckle as an example, the scratch and crush defects on the surface are classified. The network takes DeepLabV3+ as the framework and three types of image stream as the input of the network. In the backbone feature extraction network, the Xception structure is improved to MobilenetV2 and the convolutional block attention module (CBAM) is introduced into the decoding network, which improves the operational efficiency and accuracy. Compared with other classical networks, this network demonstrates good performance in the image dataset of the seatbelt buckle and realises fast and accurate semantic segmentation and classification of surface defects. The evaluation results of the network model have been significantly improved.

Publisher

British Institute of Non-Destructive Testing (BINDT)

Subject

Materials Chemistry,Metals and Alloys,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3