Affiliation:
1. College of Information Science and Engineering, Northeastern University, Heping, Shenyang 110819, Liaoning, China
Abstract
Fault type and fault degree identification are the main aim in the bearing multi-task learning. However, a large number of on-site accidents have shown that the bearing working condition plays an important role in bearing service life and fault diagnosis. In current studies, the bearing
working condition identification task is often used for auxiliary tasks and is easily ignored. Thus, this paper studies the bearing multi-task learning, which regards the working condition identification task as an equally important task. However, simply adding the working condition identification
task to the frequently used multi-task model will lead to a reduction in the overall performance of the network. To solve the network performance degradation problem, a succinct and effective multi-task one-dimensional convolutional neural network with attention guidance mechanism and multi-scale
feature extraction (MAM-1DCNN) is proposed. Firstly, the time-series signal is selected as the input of the MAM-1DCNN model. Secondly, the shared network of the MAM-1DCNN model applies a double-layer multi-scale convolutional neural network structure to extract more complete information. Finally,
the MAM-1DCNN applies an improved attention guidance mechanism to enhance the feature application ability of different branch tasks. Through two general bearings datasets, this paper verifies the effectiveness and generalisation ability of the MAM-1DCNN model.
Publisher
British Institute of Non-Destructive Testing (BINDT)
Subject
Materials Chemistry,Metals and Alloys,Mechanical Engineering,Mechanics of Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献