Author:
Abdulaziz A H,McCrory J,Holford K,Elsabbagh A,Hedaya M
Abstract
Due to their complexity, detecting and analysing damage modes in composite honeycomb sandwich panels can be difficult. This article describes the way in which a three-point bending test (3PBT) was performed on a glass fibre aluminium honeycomb sandwich panel (HSP). Acoustic emission
(AE) was used to identify damage signals, which were then analysed to determine the positions and characteristics of defects. To locate damage positions, Delta-T mapping was used. The test load was progressively applied in three phases, with the specimen being inspected visually during each
phase. A scanning electron microscope (SEM) showed that the most significant damage was local crushing under the test load, which caused matrix cracking, fibre breakage and pull-out. Damage progression and the damage mode were detected using the cumulative energy and frequency spectra of the
AE sources for each phase. Matrix cracking frequencies ranged from 30 kHz to 100 kHz, while fibre damage modes ranged from 157 kHz to 322 kHz. The findings highlighted the utility of Delta-T mapping in locating damage positions on sandwich structures under testing. The investigation also emphasised
the value of studying frequency spectra and cumulative energy when analysing AE signals.
Publisher
British Institute of Non-Destructive Testing (BINDT)
Subject
Materials Chemistry,Metals and Alloys,Mechanical Engineering,Mechanics of Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献