A novel detection of weld defects by magneto-optical imaging under combined magnetic field

Author:

Ma Nvjie,Gao Xiangdong,Wang Congyi,Zhang Yanxi

Abstract

To overcome the shortcomings of existing magneto-optical imaging, such as the saturation of an image under a constant magnetic field and the ambiguity of an image under an alternating magnetic field, imaging using a combined magnetic field is presented in this research. Weld defect samples include a laser-cut groove, a wire-cut penetrating groove, a pit and a Z-shaped crack. Magneto-optical imaging experiments were carried out under different magnetic fields. Contour extraction and standard deviation calculations were carried out for all magneto-optical images and the maximum standard deviation of the laser-cut groove under an alternating magnetic field was 20.9, which was less than the maximum value of 37.4 under a combined magnetic field. The experimental results show that the contrast of a magneto-optical image obtained under the combined magnetic field is greater than that obtained under the alternating magnetic field for all defects. The proposed combined magnetic field could optimise the magneto-optical imaging effect for weld defects under the existing excitation method to a certain extent.

Publisher

British Institute of Non-Destructive Testing (BINDT)

Subject

Materials Chemistry,Metals and Alloys,Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3