The effects of gold nanoparticles with different surface coatings and sizes on biochemical parameters in mice

Author:

ÖZÇİÇEK İlyas1,ÇAKICI Çağrı2,AYŞİT Neşe1,ERİM Ümit Can3

Affiliation:

1. Department of Medical Biology, Istanbul Medipol University School of Medicine, Istanbul, Turkey; Health Science and Technologies Research Institute (SABITA), Istanbul Medipol University, Istanbul, Turkey

2. Department of Medical Biochemistry, Istanbul Medipol University School of Medicine, Istanbul, Turkey

3. Department of Analytical Chemistry, Istanbul Medipol University School of Pharmacy, Istanbul, Turkey

Abstract

Objectives: Gold nanoparticles are very popular metallic nanomaterials and they have a wide spectrum of biomedical applications. This study was aimed to the production of stable and monodisperse polyethyleneimine (PEI) and polyethylene glycol (PEG) coated gold nanoparticles (AuNP20 and AuNP50), investigation of their in vivo biochemical effects in the BALB/c mice. Methods: Gold nanoparticles were synthesized and their surfaces were modified by PEI and PEG. All the necessary physicochemical characterizations were performed. After the single high dose i.v. injection (5 mg Au/kg animal weight) of the AuNP groups, their in vivo biochemical effects were evaluated multiparametrically in the mice on day 14. Results: Highly monodisperse and stable AuNPs were synthesized successfully. Significant changes in the biochemical hemogram parameters were observed depending on the surface coatings of the AuNPs. PEI and PEG surface coatings increased biocompatibility. No excessive oxidative stress response was observed in all the gold nanoparticle groups. Conclusions: It has been concluded that the surface chemistry of the particles is a more decisive parameter than the size in terms of in vivo biochemical toxicity. The surface functionalization, stability and biocompatibility of the AuNPs are important parameters for the potential biomedical applications of gold nanoparticles in future studies.

Publisher

The European Research Journal

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3