Affiliation:
1. Johnson Matthey, Blounts Court, Sonning Common, Reading, RG4 9NH, UK
Abstract
One of the more evocative cases of disruptive innovation is how steam powered vessels displaced sailing ships in the 19th century. Independent of wind and currents, shipping entered a new age. Faster shipping enabled more efficient trading and easier international travel. It fuelled economic growth and wealth creation. This transition was not rapid, taking half a century to evolve, a period in which hybrid vessels, those using sails and steam generated power were a common sight. The age of steam brought a period of change which affected many aspects of shipping, not only its appearance and practices but also its environmental impact. It facilitated further disruption and the emergence of what has become the industry standard for a ‘prime mover’: the diesel engine. Achieving the decarbonisation of the shipping fleet as soon as possible this century will be one of the most significant disruptions the shipping sector has had to manage. Meaningful change by 2050 requires strategic development and decisive action today, made all the more complicated by the immediate demands that the sector manages both the current and longer term impact that the COVID-19 pandemic will have on the shipping industry. This paper looks briefly at the transition from wind power to carbon based fuel power to gain insight into how the shipping sector manages disruptive change. It also reviews some technology options the shipping sector could adopt to reduce its environmental impact to meet a timetable of international requirements on ship emissions limits. The paper will focus on how the engine room might evolve with changes in: (i) energy conversion, how power is generated on board, i.e. the engine; and (ii) energy storage, i.e. choice of fuel.
Subject
Electrochemistry,Metals and Alloys,Process Chemistry and Technology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献