The Role of Zero and Low Carbon Hydrogen in Enabling the Energy Transition and the Path to Net Zero Greenhouse Gas Emissions

Author:

French Sam1

Affiliation:

1. Johnson Matthey, 10 Eastbourne Terrace, London, W2 6LG, UK

Abstract

As public pressure to limit global warming continues to rise, governments, policy makers and regulators are looking for the most effective ways to achieve the target set by the Intergovernmental Panel on Climate Change (IPCC) to keep the global temperature increase to below 1.5°C above pre‐industrial levels. This will require the world to move to net zero greenhouse gas (GHG) emissions by 2050, and numerous governments have committed to reach net zero by this date, or even earlier. It is widely recognised that achieving net zero at the state, country and regional levels will necessitate a systems-wide approach across all the major sources of GHG emissions, which include power generation, transport, industrial processes and heating. Land use is also critical with billions of trees needing to be planted and a change in the amount of meat eaten. There is a growing realisation that hydrogen has a vital role to play, particularly to decarbonise sectors and applications that are otherwise extremely difficult to abate, such as industrial processes, heavy duty freight movement, dispatchable power generation and heating applications. Hydrogen will also provide long-term (for instance seasonal) energy storage, enabling much greater uptake of renewable power generation, which itself is a key prerequisite of the clean energy transition. Hydrogen can play a role in the decarbonisation of all major segments, and this means it can facilitate cross-sector coupling, enabling the exploitation of synergies between different key parts of the economy. This article discusses the different production routes to low and zero carbon hydrogen, and its uses across numerous applications to minimise and eliminate carbon dioxide and GHG emissions, building a picture of the key role that hydrogen will play in the energy transition and the broader global move towards decarbonisation and climate stabilisation. An overview of some of the ongoing and planned demonstration projects will be presented, outlining the importance of such activities in providing confidence that the hydrogen approach is the right one for multiple geographies around the world and that there are technologies that are ready to be deployed today.

Publisher

Johnson Matthey

Subject

Electrochemistry,Metals and Alloys,Process Chemistry and Technology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Carbon neutrality and hydrogen energy systems;International Journal of Hydrogen Energy;2024-08

2. Green hydrogen: Paving the way for India’s decarbonization revolution;Environmental Science and Pollution Research;2024-07-10

3. Potential cost savings of large-scale blue hydrogen production via sorption-enhanced steam reforming process;Energy Conversion and Management;2024-02

4. Sustainability Assessment of Gaseous and Liquid Hydrogen Production Processes;2023 10th IEEE International Conference on Power Systems (ICPS);2023-12-13

5. An overview of underground hydrogen storage with prospects and challenges for the Australian context;Geoenergy Science and Engineering;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3