A 10-17 DOF Sensory Gloves with Harvesting Capability for Smart Healthcare

Author:

Leoni Alfiero,Stornelli Vincenzo,Ferri Giuseppe,Orengo Giancarlo,Errico Vito,Pallotti Antonio,Saggio Giovanni

Abstract

We here present a 10-17 Degrees of Freedom (DoF) sensory gloves for Smart Healthcare implementing an energy harvesting architecture, aimed at enhancing the battery lasting when powering the electronics of the two different types of gloves, used to sense fingers movements. In particular, we realized a comparison in terms of measurement repeatability and reliability, as well as power consumption and battery lasting, between two sensory gloves implemented by means of different technologies. The first is a 3D printed glove with 10 DoF, featuring low-cost, low-effort fabrication and low-power consumption. The second is a classical Lycra® glove with 14 DoF suitable for a more detailed assessment of the hand postures, featuring a relatively higher cost and power consumption. An electronic circuitry was designed to gather and elaborate data from both types of sensory gloves, differing for number of inputs only.  Both gloves are equipped with flex sensors and in addiction with the electronics (including a microcontroller and a transmitter) allow the control of hand virtual limbs or mechanical arts in surgical, military, space and civil applications.Six healthy subjects were involved in tests suitable to evaluate the performances of the proposed gloves in terms of repeatability, reproducibility and reliability. Particular effort was devoted to increase battery lasting for both glove-based systems, with the electronics relaying on Radio Frequency, Piezoelectric and Thermoelectric harvesters. The harvesting part was built and tested as a prototype discrete element board, that is interfaced with an external microcontroller and a radiofrequency transmitter board. Measurement results demonstrated a meaningful improvement in battery operation time up to 25%, considering different operating scenarios.

Publisher

Croatian Communications and Information Society

Subject

Electrical and Electronic Engineering,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards Smart Sensor Systems for Precision Farming: Electrode Potential Energy Harvesting from Plants' Soil;2022 29th IEEE International Conference on Electronics, Circuits and Systems (ICECS);2022-10-24

2. Micro Energy Harvesting from the Soil of Indoor Living Plants;2022 7th International Conference on Smart and Sustainable Technologies (SpliTech);2022-07-05

3. IoT-Ready Energy-Autonomous Parking Sensor Device;IEEE Internet of Things Journal;2021-03-15

4. RFID interface for compact pliable EMG wireless epidermal sensor;2020 IEEE International Workshop on Metrology for Industry 4.0 & IoT;2020-06

5. Spherical Anemometer for Novel Portable and Fixed-Point Wind Measurement Devices;Lecture Notes in Electrical Engineering;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3