Mesh Network for RFID and Electric Vehicle Monitoring in Smart Charging Infrastructure

Author:

Chung Ching-Yen,Shepelev Aleksey,Qiu Charlie,Chu Chi-Cheng,Gadh Rajit

Abstract

With an increased number of plug-in electric vehicles (PEVs) on the roads, PEV charging infrastructure is gaining an ever-more important role in simultaneously meeting the needs of drivers and those of the local distribution grid. However, the current approach to charging is not well suited to scaling with the PEV market. If PEV adoption continues, charging infrastructure will have to overcome its current shortcomings such as unresponsiveness to grid constraints, low degree of autonomy, and high cost, in order to provide a seamless and configurable interface from the vehicle to the power grid. Among the tasks a charging station will have to accomplish will be PEV identification, charging authorization, dynamic monitoring, and charge control. These will have to be done with a minimum of involvement at a maximum of convenience for a user. The system proposed in this work allows charging stations to become more responsive to grid constraints and gain a degree of networked autonomy by automatically identifying and authorizing vehicles, along with monitoring and controlling all charging activities via an RFID mesh network consisting of charging stations and in-vehicle devices. The proposed system uses a ZigBee mesh network of in-vehicle monitoring devices which simultaneously serve as active RFID tags and remote sensors. The system outlined lays the groundwork for intelligent charge-scheduling by providing access to vehicle’s State of Charge (SOC) data as well as vehicle/driver IDs, allowing a custom charging schedule to be generated for a particular driver and PEV. The approach presented would allow PEV charging to be conducted effectively while observing grid constraints and meeting the needs of PEV drivers.

Publisher

Croatian Communications and Information Society

Subject

Electrical and Electronic Engineering,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Smart Economic Operation of EV Charging Station and Battery Monitoring System;Advances in Intelligent Systems and Computing;2023

2. Integration of Electric Vehicles in Smart Grids;2021 International Conference on Microelectronics (ICM);2021-12-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3