Performance of a New Design Based on Substrate-Integrated Waveguide Slotted Antenna Arrays for Dual-Band Applications (Ku / K)

Author:

Abes Turkiya1,Nouri Keltouma2,Bouazza Boubaker Seddik2,Becharef Kada2

Affiliation:

1. Faculty of Technology, University Dr. Moulay Tahar Saida, Algeria

2. University Dr. Moulay Tahar Saida, Algeria

Abstract

This paper introduces and discusses the study of a new concept for SIW array antenna development. This conducted development is based on three designs, two of them related to 1x2 arrays fed by SIW line, combined with SIW inset line, and the last designed for 2X2 array antenna feed by SIW inset line. All these structures are designed to give dual-band at (Ku - K) bands with enhanced gain and bandwidth. The new 2x2 array antenna has a high gain, and it consists of four SIW cavities staggered patches with a 90° phase shift, which are fed using microstrip line shielded by SIW vias. The designs were conducted using full-wave simulator ANSYS HFSS - the frequency domain solver. The 2x2 array antenna gives a return loss about (-20 dB), a high gain of 9.05 dB, and two bandwidth equals 210 MHz and 1310 MHz respectively at both of the operating bands. To validate the simulated results the simulation was conducted again using the time-domain solver of the CST Microwave Studio (MWS) full-wave simulator. Simulation results obtained from the two software having different solvers were in good agreement in the results.

Publisher

Croatian Communications and Information Society

Subject

Electrical and Electronic Engineering,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Miniature Circular Implantable antenna for Wireless Biomedical Applications;2022 7th International Conference on Image and Signal Processing and their Applications (ISPA);2022-05-08

2. Miniaturization of SIW Broadband Bandpass Filters Based on the Complementary Interdigital Resonator E (CIRE);Wireless Personal Communications;2022-02-18

3. E-shape metamaterials embedded implantable antenna for ISM-band biomedical applications;Research on Biomedical Engineering;2022-01-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3