Probabilistic Model of the Reflectivity of Construction Materials of the Agroindustrial Complex

Author:

Gallyamova Tat’yana R.,

Abstract

When developing modern lighting technologies for objects of the agro-industrial complex, the problem arises of assessing the contribution of reflected light to the normalized illumination. The reflective properties of the surfaces of materials are characterized by a reflection coefficient ρ, which reaches a value of 0.7. This allows us to consider the reflective surfaces as an additional light source and the possibility of reducing energy consumption costs. (Research purpose) The research purpose is in developing a mathematical model that allows us to estimate the spectral reflection coefficient ρ(λ) of materials of construction technologies of the agro-industrial complex in the ultraviolet and visible spectral regions. (Materials and methods) That the disadvantage of various models is the lack of an analytical method for calculating the reflection coefficient in a wide range of wavelengths. We used a probabilistic method to overcome this disadvantage. (Results and discussion) The developed mathematical model makes it possible to estimate the reflection coefficient of the rough surface of materials in a wide range of the spectrum. For concrete, the area of agreement between theory and experiment is in the wavelength range from 250 to 1000 nm. The saturation mode predicted by the theory (the independence of the reflection coefficient from the wavelength) at a reflection coefficient of 0.4 is consistent with the experimental values in the visible range of the spectrum for construction materials of the agro-industrial complex, in particular, gray textured concrete, gray facade paint, light wood, gray silicate brick, new plaster without whitewash. (Conclusions) In the case of normal light incidence, the developed mathematical model allows us to theoretically estimate the reflection coefficient of the rough surfaces of construction technologies of the agro-industrial complex. The proposed model can be used in the development and design of a system of technological lighting of large-area premises (for example, when keeping birds on the floor), as well as for developing recommendations for reducing the energy consumption of existing lighting systems.

Publisher

FSBI All Russian Research Institute for Mechanization in Agriculture (VIM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3