Abstract
When developing modern lighting technologies for objects of the agro-industrial complex, the problem arises of assessing the contribution of reflected light to the normalized illumination. The reflective properties of the surfaces of materials are characterized by a reflection coefficient ρ, which reaches a value of 0.7. This allows us to consider the reflective surfaces as an additional light source and the possibility of reducing energy consumption costs. (Research purpose) The research purpose is in developing a mathematical model that allows us to estimate the spectral reflection coefficient ρ(λ) of materials of construction technologies of the agro-industrial complex in the ultraviolet and visible spectral regions. (Materials and methods) That the disadvantage of various models is the lack of an analytical method for calculating the reflection coefficient in a wide range of wavelengths. We used a probabilistic method to overcome this disadvantage. (Results and discussion) The developed mathematical model makes it possible to estimate the reflection coefficient of the rough surface of materials in a wide range of the spectrum. For concrete, the area of agreement between theory and experiment is in the wavelength range from 250 to 1000 nm. The saturation mode predicted by the theory (the independence of the reflection coefficient from the wavelength) at a reflection coefficient of 0.4 is consistent with the experimental values in the visible range of the spectrum for construction materials of the agro-industrial complex, in particular, gray textured concrete, gray facade paint, light wood, gray silicate brick, new plaster without whitewash. (Conclusions) In the case of normal light incidence, the developed mathematical model allows us to theoretically estimate the reflection coefficient of the rough surfaces of construction technologies of the agro-industrial complex. The proposed model can be used in the development and design of a system of technological lighting of large-area premises (for example, when keeping birds on the floor), as well as for developing recommendations for reducing the energy consumption of existing lighting systems.
Publisher
FSBI All Russian Research Institute for Mechanization in Agriculture (VIM)