Detection and Characterization of Bovine Rumen Microorganisms Resistant to Sodium Fluoroacetate

Author:

Pimentel Maria Fernanda Aranega,Jesus Paula Daphine Ariadne,Riet-Correa Franklin,Dutra Valéria,Nakazato Luciano

Abstract

Background: Poisoning of animals due to toxic plants is found in Brazil and other countries. One of the known toxic plants in Brazil, with the active ingredient sodium fluoroacetate (SF), is Palicourea marcgravii. Dehalogenases that inactivate the fluor-carbon bonds are enzymes found in microorganisms and may prevent intoxication. This study evaluated the occurrence of rumen microorganisms naturally resistant to SF.Materials, Methods & Results: Two samples of rumen fluid of cattle from the Experimental Farm of Federal University of Mato Grosso fed with Brachiaria sp. were obtained via fistula in flasks. An aliquot of 2 mL was placed in a microtube and centrifuged at 9000 g for 1 min. Then, the sample was inoculated into 2 tubes, one containing 100 µL of clarified rumen fluid in 2 mL of modified liquid culture medium (0.1% ammonium sulfate, 0.1% potassium phosphate monobasic, 0.05% sodium phosphate dibasic, 0.01% magnesium sulfate, 0.01% yeast extract, pH 7.0) and 0.4% of SF and the other sample containing 2 mL of liquid culture medium and 100 µL of clarified rumen fluid. The 2 samples were incubated at 40°C for 24 h. Dilutions were performed under the same conditions every 24 h until the attainment of microorganisms resistant to SF, and the finaldilution containing 50 µL of each sample was plated in the middle containing SF (0.4%) and incubated at 40°C for 24 h for the isolation of bacteria. The bacterial colonies resistant to SF were identified by morphological methods, stained, and subjected to DNA extraction sequencing using the universal primers 27f and 1492r (16S rDNA) for the identification of the bacterial genus using Blast DNA identity analysis. These bacteria were cultured with and without SF (0.4%), and the presence of fluoride ions was detected by an ion-selective electrode (fluoride) during incubation for 0, 30, 60, 90, and 120 min. Two resistant microorganisms were isolated, one was a Gram-positive coccus and the other was a Gram-positive rod. DNA sequencing identified these organisms as Enterococcus faecalis (98% identity Genbank 1358689) and Bacillus sp. (89% identity Genbank 1358671). Fluoride ions were detected more at 60-min incubation time in both E. faecalis (0.0560 ppm) and Bacillus sp. (0.0488 ppm). Bioassay protection tests were performed in mice ofthe following four groups: negative control (NC) with saline administration, positive control (PC) with administration of plant containing SF, Bacillus group (BG) with administration of plant containing SF plus Bacillus sp., and coccus group (CG) with administration of SF and E. faecalis. Clinical signs were recorded, and statistical analyses were performed to confirm the differences in the groups. Bioassay protection tests showed clinical signs of intoxication in the PC group (83.3%), BG group (100%), and CG group (16.6%) but not in the NC group (0%), with a statistical difference between GC and PC groups (P < 0.05).Discussion: Several environmental bacteria possessing dehalogenase activity have been described, such as Pseudomonas sp., Moraxella sp., and Burkholderia sp. and Pigmentiphaga kullae and Ancylobacter dichloromethanicus isolated from the rumen. No previous study has yet reported an association between dehalogenase activity and E. faecalis, and the protection assay has been observed only in the E. faecalis group. Similar results were observed in experimental intoxication in goats that had previously consumed SF, with the microorganisms identified being Pigmentiphaga kullae and Ancylobacter dichloromethanicus. E. faecalis, isolated from the bovine rumen, exhibited a dehalogenase activity, which could help control animal poisoning by plants containing SF.

Publisher

Universidade Federal do Rio Grande do Sul

Subject

General Veterinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3