Numerical Investigation on Aerodynamic Characteristics of Damaged Infinite Wings With Variation in Penetration Angle

Author:

Yahyavi Bahareh1ORCID,Mani Mahmoud1ORCID,Naddaf Habibollah1ORCID

Affiliation:

1. Amirkabir University of Technology - Aerospace Engineering Department - Center of Excellence for Computational Aerospace Engineering - Tehran - Iran

Abstract

Aerodynamic performance of a full span NACA 641-412 airfoil with a circular-shaped damage at various attack directions has been numerically investigated in this study. To assess the aerodynamic effects of different penetration angles in which threats such as projectiles can pass through the wings, attack directions of 30°, 60°, -30° and -60° relative to the normal axis of the chord line has been studied and compared with attack direction of 0°. To validate with published studies about damaged wing, the 200 mm chord airfoil was simulated with the damage hole diameter of 20% chord at the midspan and midchord location in Reynolds number of 500,000. Quantitative and qualitative results of this numerical study had a good agreement with published experimental data due to appropriate structured mesh and turbulence modelling. In addition to lift, drag and pitching moment coefficient, surface pressure distribution around the damage hole has been studied. Results show that, if the penetration angle becomes more negative, aerodynamics performance of the wing will be further decreased; therefore, attack directions of threat mechanisms such as “ahead and above” or “below from the rear” have severe negative impact than other directions on aerodynamic performance of the damaged infinite wing.

Publisher

FapUNIFESP (SciELO)

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3