Investigation of the Flow In Cold Condition at the Exit of a Supersonic Combustor Test Bench

Author:

Guimarães Jefte da Silva1ORCID,Leite Valéria Serrano Faillace Oliveira1ORCID,Carinhana Junior Dermeval1ORCID,Minucci Marco Antônio Sala1ORCID

Affiliation:

1. Departamento de Ciência e Tecnologia Aeroespacial – Instituto de Estudos Avançados

Abstract

For studies of hypersonic flows and supersonic combustion in ground test facilities, three devices can be used as ram accelerators, shock tunnels and supersonic combustor test benches. These devices can reproduce, on the ground, similar conditions to those in real flight at a certain altitude and speed. In the case of the supersonic combustor test bench (SCTB), it simulates the same flow conditions inside the combustor of a scramjet. The SCTB consists basically of a combustion chamber or vitiated air generator unit, where the air is heated, and a nozzle, where the air is accelerated to the desired test speed. The supersonic combustor to be tested is directly coupled to the nozzle exit of the SCTB. Ultimately, it was necessary to use a transition piece to connect the nozzle to the combustor to be tested, because the nozzle exit has a circular section and the combustor entrance has a rectangular one. This work aims to present the process of characterizing the cold flow along the SCTB of the Institute for Advanced Studies (IEAv) using the schlieren technique. The interference of the transition piece in obtaining the required flow conditions at the exit of the SCTB or the entrance of the combustor was mainly evaluated.

Publisher

FapUNIFESP (SciELO)

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3