Robust Optimum Trajectory Design of a Satellite Launch Vehicle in the Presence of Uncertainties

Author:

Zardashti Reza1ORCID,Jafari Mahdi1ORCID,Hosseini Sayyed Majid1ORCID,Arani Sayyed Ali Saadatdar1ORCID

Affiliation:

1. Malek Ashtar University of Technology - Faculty of Aerospace - Tehran - Iran

Abstract

In this paper, a robust optimization method is developed to solve the Satellite Launch Vehicle (SLV) trajectory design problem in the presence of uncertainties. Given these uncertainties in the actual SLV ascent trajectory, it is important to find an optimal trajectory that is resistant to these uncertainties, as it results in increased flight performance, reduced steering-control system workload and increased SLV reliability. For this purpose, the optimization problem is first considered by applying to maximize the payload mass criterion as an objective function and three-dimensional equations of motions as the governing constraints. Then by adding mean and standard deviation parameters of uncertainties, the robust optimizer model is developed and the genetic algorithm is used to execute the model. Monte Carlo simulation is also used to analyze the results of uncertainties and its continuous feedback to the optimizer model. Finally, an optimal trajectory is obtained that is robust to the uncertainties effects such as aerodynamic coefficients, dry mass and thrust errors of the SLV. The results of the simulation show the validity of this claim.

Publisher

FapUNIFESP (SciELO)

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3