Abstract
<p style='text-indent:20px;'>In this survey we discuss old and new results on the number of critical points of solutions of the problem</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE0.1"> \begin{document}$ \begin{equation} \begin{cases} -\Delta u = f(u)&in\ \Omega\\ u = 0&on\ \partial \Omega \end{cases} \;\;\;\;\;\;\;\;(0.1)\end{equation} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ \Omega\subset \mathbb{R}^N $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M2">\begin{document}$ N\ge2 $\end{document}</tex-math></inline-formula> is a smooth bounded domain. Both cases where <inline-formula><tex-math id="M3">\begin{document}$ u $\end{document}</tex-math></inline-formula> is a positive or nodal solution will be considered.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference42 articles.
1. A. Acker, L. E. Payne, G. Philippin.On the convexity of level lines of the fundamental mode in the clamped membrane problem, and the existence of convex solutions in a related free boundary problem, Z. Angew. Math. Phys., 32 (1981), 683-694.
2. G. Alessandrini.Nodal lines of eigenfunctions of the fixed membrane problem in general convex domains, Comment. Math. Helv., 69 (1994), 142-154.
3. G. Alessandrini and R. Magnanini, The index of isolated critical points and solutions of elliptic equations in the plane, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 19 (1992), 567-589, http://www.numdam.org/item?id=ASNSP_1992_4_19_4_567_0.
4. J. Arango, A. Gómez.Critical points of solutions to elliptic problems in planar domains, Commun. Pure Appl. Anal., 10 (2011), 327-338.
5. A. Bahri, Y. Li, O. Rey.On a variational problem with lack of compactness: The topological effect of the critical points at infinity, Calc. Var. Partial Differential Equations, 3 (1995), 67-93.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献