Author:
Wu Guochun,Wang Han,Zhang Yinghui
Abstract
<p style='text-indent:20px;'>We are concerned with the Cauchy problem of the 3D compressible Navier–Stokes–Poisson system. Compared to the previous related works, the main purpose of this paper is two–fold: First, we prove the optimal decay rates of the higher spatial derivatives of the solution. Second, we investigate the influences of the electric field on the qualitative behaviors of solution. More precisely, we show that the density and high frequency part of the momentum of the compressible Navier–Stokes–Poisson system have the same <inline-formula><tex-math id="M2">\begin{document}$ L^2 $\end{document}</tex-math></inline-formula> decay rates as the compressible Navier–Stokes equation and heat equation, but the <inline-formula><tex-math id="M3">\begin{document}$ L^2 $\end{document}</tex-math></inline-formula> decay rate of the momentum is slower due to the effect of the electric field.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference30 articles.
1. P. Bella.Long time behavior of weak solutions to Navier–Stokes–Poisson system, J. Math. Fluid Mech., 14 (2012), 279-294.
2. Q. Bie, Q. Wang, Z. Yao.Optimal decay rate for the compressible Navier–Stokes–Poisson system in the critical $L^p$ framework, J. Differential Equations, 263 (2017), 8391-8417.
3. Q. Chen, G. Wu and Y. Zhang, Optimal large time behavior of the compressible bipolar Navier-Stokes-Poisson system with unequal viscosities, Preprint, arXiv: 2104.08565v1 [math.AP] 17 Apr 2021.
4. N. Chikami, R. Danchin.On the global existence and time decay estimates in critical spaces for the Navier–Stokes–Poisson system, Math. Nachr., 290 (2017), 1939-1970.
5. D. Donatelli.Local and global existence for the coupled Navier–Stokes–Poisson problem, Quart. Appl. Math., 61 (2003), 345-361.