Optimal time-decay rates of the compressible Navier–Stokes–Poisson system in $ \mathbb R^3 $

Author:

Wu Guochun,Wang Han,Zhang Yinghui

Abstract

<p style='text-indent:20px;'>We are concerned with the Cauchy problem of the 3D compressible Navier–Stokes–Poisson system. Compared to the previous related works, the main purpose of this paper is two–fold: First, we prove the optimal decay rates of the higher spatial derivatives of the solution. Second, we investigate the influences of the electric field on the qualitative behaviors of solution. More precisely, we show that the density and high frequency part of the momentum of the compressible Navier–Stokes–Poisson system have the same <inline-formula><tex-math id="M2">\begin{document}$ L^2 $\end{document}</tex-math></inline-formula> decay rates as the compressible Navier–Stokes equation and heat equation, but the <inline-formula><tex-math id="M3">\begin{document}$ L^2 $\end{document}</tex-math></inline-formula> decay rate of the momentum is slower due to the effect of the electric field.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3