Accelerating the Bayesian inference of inverse problems by using data-driven compressive sensing method based on proper orthogonal decomposition

Author:

Xiong Meixin,Chen Liuhong,Ming Ju,Shin Jaemin

Abstract

<p style='text-indent:20px;'>In Bayesian inverse problems, using the Markov Chain Monte Carlo method to sample from the posterior space of unknown parameters is a formidable challenge due to the requirement of evaluating the forward model a large number of times. For the purpose of accelerating the inference of the Bayesian inverse problems, in this work, we present a proper orthogonal decomposition (POD) based data-driven compressive sensing (DCS) method and construct a low dimensional approximation to the stochastic surrogate model on the prior support. Specifically, we first use POD to generate a reduced order model. Then we construct a compressed polynomial approximation by using a stochastic collocation method based on the generalized polynomial chaos expansion and solving an <inline-formula><tex-math id="M1">\begin{document}$ l_1 $\end{document}</tex-math></inline-formula>-minimization problem. Rigorous error analysis and coefficient estimation was provided. Numerical experiments on stochastic elliptic inverse problem were performed to verify the effectiveness of our POD-DCS method.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3