Abstract
<p style='text-indent:20px;'>Existence and uniqueness of positive radial solutions of some weighted fourth order elliptic Navier and Dirichlet problems in the unit ball <inline-formula><tex-math id="M1">\begin{document}$ B $\end{document}</tex-math></inline-formula> are studied. The weights can be singular at <inline-formula><tex-math id="M2">\begin{document}$ x = 0 \in B $\end{document}</tex-math></inline-formula>. Existence of positive radial solutions of the problems is obtained via variational methods in the weighted Sobolev spaces. To obtain the uniqueness results, we need to know exactly the asymptotic behavior of the solutions at the singular point <inline-formula><tex-math id="M3">\begin{document}$ x = 0 $\end{document}</tex-math></inline-formula>.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference17 articles.
1. L. Caffarelli, R. Kohn, L. Nirenberg.First order interpolation inequalities with weights, Compositio Math., 53 (1984), 259-275.
2. P. Caldiroli, R. Musina.On Caffarelli-Kohn-Nirenberg type inequalities for the weighted biharmonic operator in cones, Milan J. Math., 79 (2011), 657-687.
3. F. Catrina, Z.-Q. Wang.On the Caffarelli-Kohn-Nirenberg inequalities: Sharp constants, existence (and nonexistence), and symmetry of extremal functions, Comm. Pure Appl. Math., 54 (2001), 229-258.
4. K. S. Chou, C. W. Chu.On the best constant for a weighted Sobolev-Hardy inequality, J. London Math. Soc., 48 (1993), 137-151.
5. E. N. Dancer, Y. Du, Z. Guo.Finite Morse index solutions of an elliptic equation with supercritical exponent, J. Differential Equations, 250 (2011), 3281-3310.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献