Abstract
<p style='text-indent:20px;'>Deep brain stimulation (DBS) alleviates the symptoms of tremor, rigidity, and akinesia of the Parkinson's disease (PD). Over decades of the clinical experience, subthalamic nucleus (STN), globus pallidus externa (GPe) and globus pallidus internal (GPi) have been chosen as the common DBS target sites. However, how to design the DBS waveform is still a challenging problem. There is evidence that chronic high-frequency stimulation may cause long-term tissue damage and other side effects. In this paper, we apply a form of DBS with delayed rectangular waveform, denoted as pulse-delay-pulse (PDP) type DBS, on multiple-site based on a computational model of the basal ganglia-thalamus (BG-TH) network. We mainly investigate the effects of the stimulation frequency on relay reliability of the thalamus neurons, beta band oscillation of GPi nucleus and firing rate of the BG network. The results show that the PDP-type DBS at STN-GPe site results in better performance at lower frequencies, while the DBS at GPi-GPe site causes the number of spikes of STN to decline and deviate from the healthy status. Fairly good therapeutic effects can be achieved by PDP-type DBS at STN-GPi site only at higher frequencies. Thus, it is concluded that the application of multiple-site stimulation with PDP-type DBS at STN-GPe is of great significance in treating symptoms of neurological disorders in PD.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献