Multiple-site deep brain stimulation with delayed rectangular waveforms for Parkinson's disease

Author:

Shi Xia,Zhang Ziheng

Abstract

<p style='text-indent:20px;'>Deep brain stimulation (DBS) alleviates the symptoms of tremor, rigidity, and akinesia of the Parkinson's disease (PD). Over decades of the clinical experience, subthalamic nucleus (STN), globus pallidus externa (GPe) and globus pallidus internal (GPi) have been chosen as the common DBS target sites. However, how to design the DBS waveform is still a challenging problem. There is evidence that chronic high-frequency stimulation may cause long-term tissue damage and other side effects. In this paper, we apply a form of DBS with delayed rectangular waveform, denoted as pulse-delay-pulse (PDP) type DBS, on multiple-site based on a computational model of the basal ganglia-thalamus (BG-TH) network. We mainly investigate the effects of the stimulation frequency on relay reliability of the thalamus neurons, beta band oscillation of GPi nucleus and firing rate of the BG network. The results show that the PDP-type DBS at STN-GPe site results in better performance at lower frequencies, while the DBS at GPi-GPe site causes the number of spikes of STN to decline and deviate from the healthy status. Fairly good therapeutic effects can be achieved by PDP-type DBS at STN-GPi site only at higher frequencies. Thus, it is concluded that the application of multiple-site stimulation with PDP-type DBS at STN-GPe is of great significance in treating symptoms of neurological disorders in PD.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Deep Brain Stimulation Optimization Strategy Based on Actor-Critic Network;2024 IEEE International Instrumentation and Measurement Technology Conference (I2MTC);2024-05-20

2. Complex nonlinear dynamics of bursting of thalamic neurons related to Parkinson's disease;Electronic Research Archive;2024

3. Adaptive Stimulations in a Biophysical Network Model of Parkinson’s Disease;International Journal of Molecular Sciences;2023-03-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3