Abstract
<p style='text-indent:20px;'>In this paper, we consider the inviscid, incompressible planar flows in a bounded domain with a hole and construct stationary classical solutions with single vortex core, which is closed to the hole. This is carried out by constructing solutions to the following semilinear elliptic problem</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1111"> \begin{document}$ \begin{equation} \begin{cases} -\Delta \psi = \lambda(\psi-\frac{\kappa}{4\pi}\ln\lambda)_+^p,\quad &\text{in}\; \Omega,\\ \psi = \rho_\lambda,\quad &\text{on}\; \partial O_0,\\ \psi = 0,\quad &\text{on}\; \partial\Omega_0, \end{cases} \;\;\;\;\;\;\;\;(1)\end{equation} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ p>1 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ \kappa $\end{document}</tex-math></inline-formula> is a positive constant, <inline-formula><tex-math id="M3">\begin{document}$ \rho_\lambda $\end{document}</tex-math></inline-formula> is a constant, depending on <inline-formula><tex-math id="M4">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M5">\begin{document}$ \Omega = \Omega_0\setminus \bar{O}_0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M6">\begin{document}$ \Omega_0 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M7">\begin{document}$ O_0 $\end{document}</tex-math></inline-formula> are two planar bounded simply-connected domains. We show that under the assumption <inline-formula><tex-math id="M8">\begin{document}$ (\ln\lambda)^\sigma\leq\rho_\lambda\leq (\ln\lambda)^{1-\sigma} $\end{document}</tex-math></inline-formula> for some <inline-formula><tex-math id="M9">\begin{document}$ \sigma>0 $\end{document}</tex-math></inline-formula> small, (1) has a solution <inline-formula><tex-math id="M10">\begin{document}$ \psi_\lambda $\end{document}</tex-math></inline-formula>, whose vorticity set <inline-formula><tex-math id="M11">\begin{document}$ \{y\in \Omega:\, \psi(y)-\kappa+\rho_\lambda\eta(y)>0\} $\end{document}</tex-math></inline-formula> shrinks to the boundary of the hole as <inline-formula><tex-math id="M12">\begin{document}$ \lambda\to +\infty $\end{document}</tex-math></inline-formula>.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference17 articles.
1. A. Ambrosetti, J. Yang.Asymptotic behaviour in planar vortex theory, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 1 (1990), 285-291.
2. V. I. Arnold and B. A. Khesin, Topological Methods in Hydrodynamics, Second edition. Applied Mathematical Sciences, 125. Springer, Cham, 2021.
3. M. S. Berger, L. E. Fraenkel.Nonlinear desingularization in certain free-boundary problems, Comm. Math. Phys., 77 (1980), 149-172.
4. G. R. Burton.Variational problems on classes of rearrangements and multiple configurations for steady vortices, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 295-319.
5. G. R. Burton.Rearrangements of functions, saddle points and uncountable families of steady configurations for a vortex, Acta Math., 163 (1989), 291-309.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Boundary plasmas for a confined plasma problem in dimensional two;Calculus of Variations and Partial Differential Equations;2023-01-11