Author:
Thai Tran Hong,Dai Nguyen Anh,Anh Pham Tuan
Abstract
<p style='text-indent:20px;'>In this paper, we study the boundedness and persistence of positive solution, existence of invariant rectangle, local and global behavior, and rate of convergence of positive solutions of the following systems of exponential difference equations</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} x_{n+1} = \dfrac{\alpha_1+\beta_1e^{-x_{n-1}}}{\gamma_1+y_n},\ y_{n+1} = \dfrac{\alpha_2+\beta_2e^{-y_{n-1}}}{\gamma_2+x_n},\\ x_{n+1} = \dfrac{\alpha_1+\beta_1e^{-y_{n-1}}}{\gamma_1+x_n},\ y_{n+1} = \dfrac{\alpha_2+\beta_2e^{-x_{n-1}}}{\gamma_2+y_n}, \end{align*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where the parameters <inline-formula><tex-math id="M1">\begin{document}$ \alpha_i,\ \beta_i,\ \gamma_i $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M2">\begin{document}$ i \in \{1,2\} $\end{document}</tex-math></inline-formula> and the initial conditions <inline-formula><tex-math id="M3">\begin{document}$ x_{-1}, x_0, y_{-1}, y_0 $\end{document}</tex-math></inline-formula> are positive real numbers. Some numerical example are given to illustrate our theoretical results.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference20 articles.
1. R. P. Agarwal, Difference Equations and Inequalities, 2$^{nd}$ edition, Dekker, New York, 2000.
2. Q. Din.Global stability of a population models, Chaos, Solitons & Fractals, 59 (2014), 119-128.
3. Q. Din, E. M. Elsayed.Stability analysis of a discrete ecological model, Computational Ecology and Software, 4 (2014), 89-103.
4. H. El-Metwally, E. A. Grove, G. Ladas, R. Levins, M. Radin.On the difference equation $x_{n+1} = \alpha + \beta x_{n-1}e^{-x_n}$, Nonlinear Anal., 47 (2001), 4623-4634.
5. N. Fotiades, G. Papaschinopoulos.Existence, uniqueness and attractivity of prime period two solution for a difference equation of exponential form, Appl. Math. Comput., 218 (2012), 11648-11653.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献