Yamabe systems and optimal partitions on manifolds with symmetries

Author:

Clapp Mónica,Pistoia Angela

Abstract

<p style='text-indent:20px;'>We prove the existence of regular optimal <inline-formula><tex-math id="M1">\begin{document}$ G $\end{document}</tex-math></inline-formula>-invariant partitions, with an arbitrary number <inline-formula><tex-math id="M2">\begin{document}$ \ell\geq 2 $\end{document}</tex-math></inline-formula> of components, for the Yamabe equation on a closed Riemannian manifold <inline-formula><tex-math id="M3">\begin{document}$ (M,g) $\end{document}</tex-math></inline-formula> when <inline-formula><tex-math id="M4">\begin{document}$ G $\end{document}</tex-math></inline-formula> is a compact group of isometries of <inline-formula><tex-math id="M5">\begin{document}$ M $\end{document}</tex-math></inline-formula> with infinite orbits. To this aim, we study a weakly coupled competitive elliptic system of <inline-formula><tex-math id="M6">\begin{document}$ \ell $\end{document}</tex-math></inline-formula> equations, related to the Yamabe equation. We show that this system has a least energy <inline-formula><tex-math id="M7">\begin{document}$ G $\end{document}</tex-math></inline-formula>-invariant solution with nontrivial components and we show that the limit profiles of its components separate spatially as the competition parameter goes to <inline-formula><tex-math id="M8">\begin{document}$ -\infty $\end{document}</tex-math></inline-formula>, giving rise to an optimal partition. For <inline-formula><tex-math id="M9">\begin{document}$ \ell = 2 $\end{document}</tex-math></inline-formula> the optimal partition obtained yields a least energy sign-changing <inline-formula><tex-math id="M10">\begin{document}$ G $\end{document}</tex-math></inline-formula>-invariant solution to the Yamabe equation with precisely two nodal domains.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Equivariant Solutions to the Optimal Partition Problem for the Prescribed Q-Curvature Equation;The Journal of Geometric Analysis;2024-02-23

2. A system with weights and with critical Sobolev exponent;European Journal of Mathematics;2023-06-29

3. Yamabe problem in the presence of singular Riemannian Foliations;Calculus of Variations and Partial Differential Equations;2022-11-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3