Author:
Mooney Connor,Rakshit Arghya
Abstract
<abstract><p>We construct new examples of Monge-Ampère metrics with polyhedral singular structures, motivated by problems related to the optimal transport of point masses and to mirror symmetry. We also analyze the stability of the singular structures under small perturbations of the data given in the problem under consideration.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Mathematical Physics,Analysis
Reference22 articles.
1. A. D. Alexandrov, Smoothness of the convex surface of bounded Gaussian curvature, C. R. (Doklady) Acad. Sci. URSS (N. S.), 36 (1942), 195–199.
2. L. A. Caffarelli, A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity, Ann. Math., 131 (1990), 129–134. http://doi.org/10.2307/1971509
3. L. A. Caffarelli, A note on the degeneracy of convex solutions to the Monge-Ampère equation, Commun. Part. Diff. Eq., 18 (1993), 1213–1217. http://doi.org/10.1080/03605309308820970
4. L. A. Caffarelli, The regularity of mappings with a convex potential, J. Amer. Math. Soc., 5 (1992), 99–104. http://doi.org/10.1090/S0894-0347-1992-1124980-8
5. L. Caffarelli, Y. Y. Li, An extension to a theorem of Jörgens, Calabi, and Pogorelov, Commun. Pure Appl. Math., 56 (2003), 549–583. http://doi.org/10.1002/cpa.10067
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献