Author:
Lamberti Pier Domenico, ,Zaccaron Michele,
Abstract
<abstract><p>We prove spectral stability results for the $ curl curl $ operator subject to electric boundary conditions on a cavity upon boundary perturbations. The cavities are assumed to be sufficiently smooth but we impose weak restrictions on the strength of the perturbations. The methods are of variational type and are based on two main ingredients: the construction of suitable Piola-type transformations between domains and the proof of uniform Gaffney inequalities obtained by means of uniform a priori $ H^2 $-estimates for the Poisson problem of the Dirichlet Laplacian. The uniform a priori estimates are proved by using the results of V. Maz'ya and T. Shaposhnikova based on Sobolev multipliers. Connections to boundary homogenization problems are also indicated.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Mathematical Physics,Analysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献