On the low Mach number limit for 2D Navier–Stokes–Korteweg systems

Author:

Hientzsch Lars Eric

Abstract

<abstract><p>This paper addresses the low Mach number limit for two-dimensional Navier–Stokes–Korteweg systems. The primary purpose is to investigate the relevance of the capillarity tensor for the analysis. For the sake of a concise exposition, our considerations focus on the case of the quantum Navier-Stokes (QNS) equations. An outline for a subsequent generalization to general viscosity and capillarity tensors is provided. Our main result proves the convergence of finite energy weak solutions of QNS to the unique Leray-Hopf weak solutions of the incompressible Navier-Stokes equations, for general initial data without additional smallness or regularity assumptions. We rely on the compactness properties stemming from energy and BD-entropy estimates. Strong convergence of acoustic waves is proven by means of refined Strichartz estimates that take into account the alteration of the dispersion relation due to the capillarity tensor. For both steps, the presence of a suitable capillarity tensor is pivotal.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Mathematical Physics,Analysis

Reference57 articles.

1. R. A. Adams, J. J. F. Fournier, Sobolev spaces, 2 Eds., Amsterdam: Elsevier/Academic Press, 2003.

2. T. Alazard, A minicourse on the low Mach number limit, Discrete Contin. Dyn. Syst. Ser. S, 1 (2008), 365–404. https://doi.org/10.3934/dcdss.2008.1.365

3. D. M. Anderson, G. B. McFadden, A. A. Wheeler, Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech., 30 (1998), 139–165. https://doi.org/10.1146/annurev.fluid.30.1.139

4. P. Antonelli, L. E. Hientzsch, P. Marcati, On the low Mach number limit for quantum Navier-Stokes equations, SIAM J. Math. Anal., 52 (2020), 6105–6139. https://doi.org/10.1137/19M1252958

5. P. Antonelli, L. E. Hientzsch, P. Marcati, The incompressible limit for finite energy weak solutions of quantum Navier-Stokes equations, In: Hyperbolic problems: theory, numerics, applications, Springfield, MO: American Institute of Mathematical Sciences (AIMS), 2020,256–263.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3