Abstract
<abstract><p>In this work, we employ the technique developed in <sup>[<xref ref-type="bibr" rid="b2">2</xref>]</sup> to prove rotational symmetry for a class of Serrin-type problems for the standard Laplacian. We also discuss in some length how our strategy compares with the classical moving plane method.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Mathematical Physics,Analysis
Reference40 articles.
1. A. Aftalion, J. Busca, Radial symmetry of overdetermined boundary-value problems in exterior domains, Arch. Rational Mech. Anal., 143 (1998), 195–206. http://dx.doi.org/10.1007/s002050050103
2. V. Agostiniani, S. Borghini, L. Mazzieri, On the Serrin problem for ring-shaped domains, 2021, arXiv: 2109.11255.
3. V. Agostiniani, M. Fogagnolo, L. Mazzieri, Sharp geometric inequalities for closed hypersurfaces in manifolds with nonnegative Ricci curvature, Invent. Math., 222 (2020), 1033–1101. http://dx.doi.org/10.1007/s00222-020-00985-4
4. V. Agostiniani, L. Mazzieri, F. Oronzio, A Green's function proof of the positive mass theorem, 2021, arXiv: 2108.08402.
5. G. Alessandrini, A symmetry theorem for condensers, Math. Method. Appl. Sci., 15 (1992), 315–320. http://dx.doi.org/10.1002/mma.1670150503