Bounds on eigenvalues of perturbed Lamé operators with complex potentials

Author:

Cossetti Lucrezia,

Abstract

<abstract><p>Several recent papers have focused their attention in proving the correct analogue to the Lieb-Thirring inequalities for non self-adjoint operators and in finding bounds on the distribution of their eigenvalues in the complex plane. This paper provides some improvement in the state of the art in this topic. Precisely, we address the question of finding quantitative bounds on the discrete spectrum of the perturbed Lamé operator of elasticity $ -\Delta^\ast + V $ in terms of $ L^p $-norms of the potential. Original results within the self-adjoint framework are provided too.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Mathematical Physics,Analysis

Reference64 articles.

1. A. A. Abramov, A. Aslanyan, E. B. Davies, Bounds on complex eigenvalues and resonances, J. Phys. A, 34 (2001), 57–72.

2. S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 2 (1975), 151–218.

3. S. Avramska-Lukarska, D. Hundertmark, H. Kovařík, Absence of positive eigenvalues for magnetic Schrödinger operators, 2020, arXiv: 2003.07294.

4. R. Bañuelos, G. Wang, Sharp inequalities for martingales with applications to the Beurling-Ahlfors and Riesz transforms, Duke Math. J., 80 (1995), 575–600.

5. J. A. Barceló, J. M. Bennet, A. Ruiz, M. C. Vilela, Local smoothing for Kato potentials in three dimensions, Math. Nachr., 282 (2009), 1391–1405.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3