Author:
Dovetta Simone, ,Pistoia Angela
Abstract
<abstract><p>We study the existence of solutions to the cubic Schrödinger system</p>
<p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ -\Delta u_i = \sum\limits_{j = 1}^m \beta_{ij} u_j^2u_i + \lambda_i u_i\ \hbox{in}\ \Omega,\ u_i = 0\ \hbox{on}\ \partial\Omega,\ i = 1,\dots,m, $\end{document} </tex-math></disp-formula></p>
<p>when $ \Omega $ is a bounded domain in $ \mathbb R^4, $ $ \lambda_i $ are positive small numbers, $ \beta_{ij} $ are real numbers so that $ \beta_{ii} > 0 $ and $ \beta_{ij} = \beta_{ji} $, $ i\neq j $. We assemble the components $ u_i $ in groups so that all the interaction forces $ \beta_{ij} $ among components of the same group are attractive, i.e., $ \beta_{ij} > 0 $, while forces among components of different groups are repulsive or weakly attractive, i.e., $ \beta_{ij} < \overline\beta $ for some $ \overline\beta $ small. We find solutions such that each component within a given group blows-up around the same point and the different groups blow-up around different points, as all the parameters $ \lambda_i $'s approach zero.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Mathematical Physics,Analysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献