A novel hybrid model for task scheduling based on particle swarm optimization and genetic algorithms

Author:

Karishma ,Kumar Harendra

Abstract

<p>Distributed real time system has developed into an outstanding computing platform for parallel, high-efficiency applications. A real time system is a kind of planning where tasks must be completed with accurate results within a predetermined amount of time. It is well known that obtaining an optimal assignment of tasks for more than three processors is an NP-hard problem. This article examines the issue of assigning tasks to processors in heterogeneous distributed systems with a view to reduce cost and response time of the system while maximizing system reliability. The proposed method is carried out in two phases, Phase Ⅰ provides a hybrid HPSOGAK, that is an integration of particle swarm optimization (PSO), genetic algorithm (GA), and <italic>k</italic>-means technique while Phase Ⅱ is based on GA. By updating cluster centroids with PSO and GA and then using them like initial centroids for the <italic>k</italic>-means algorithm to generate the task-clusters, HPSOGAK produces 'm' clusters of 'r' tasks, and then their assignment onto the appropriate processor is done by using GA. The performance of GA has been improved in this article by introducing new crossover and mutation operators, and the functionality of traditional PSO has been enhanced by combining it with GA. Numerous examples from various research articles are employed to evaluate the efficiency of the proposed technique, and the numerical results are contrasted with well-known existing models. The proposed method enhances PIR values by 22.64%, efficiency by 6.93%, and response times by 23.8 on average. The experimental results demonstrate that the suggested method outperforms all comparable approaches, leading to the achievement of superior results. The developed mechanism is acceptable for an erratic number of tasks and processors with both types of fuzzy and crisp time.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3