Abstract
<p style='text-indent:20px;'>For a prime <inline-formula><tex-math id="M1">\begin{document}$ p\ge 5 $\end{document}</tex-math></inline-formula> let <inline-formula><tex-math id="M2">\begin{document}$ q_0,q_1,\ldots,q_{(p-3)/2} $\end{document}</tex-math></inline-formula> be the quadratic residues modulo <inline-formula><tex-math id="M3">\begin{document}$ p $\end{document}</tex-math></inline-formula> in increasing order. We study two <inline-formula><tex-math id="M4">\begin{document}$ (p-3)/2 $\end{document}</tex-math></inline-formula>-periodic binary sequences <inline-formula><tex-math id="M5">\begin{document}$ (d_n) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M6">\begin{document}$ (t_n) $\end{document}</tex-math></inline-formula> defined by <inline-formula><tex-math id="M7">\begin{document}$ d_n = q_n+q_{n+1}\bmod 2 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M8">\begin{document}$ t_n = 1 $\end{document}</tex-math></inline-formula> if <inline-formula><tex-math id="M9">\begin{document}$ q_{n+1} = q_n+1 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M10">\begin{document}$ t_n = 0 $\end{document}</tex-math></inline-formula> otherwise, <inline-formula><tex-math id="M11">\begin{document}$ n = 0,1,\ldots,(p-5)/2 $\end{document}</tex-math></inline-formula>. For both sequences we find some sufficient conditions for attaining the maximal linear complexity <inline-formula><tex-math id="M12">\begin{document}$ (p-3)/2 $\end{document}</tex-math></inline-formula>.</p><p style='text-indent:20px;'>Studying the linear complexity of <inline-formula><tex-math id="M13">\begin{document}$ (d_n) $\end{document}</tex-math></inline-formula> was motivated by heuristics of Caragiu et al. However, <inline-formula><tex-math id="M14">\begin{document}$ (d_n) $\end{document}</tex-math></inline-formula> is not balanced and we show that a period of <inline-formula><tex-math id="M15">\begin{document}$ (d_n) $\end{document}</tex-math></inline-formula> contains about <inline-formula><tex-math id="M16">\begin{document}$ 1/3 $\end{document}</tex-math></inline-formula> zeros and <inline-formula><tex-math id="M17">\begin{document}$ 2/3 $\end{document}</tex-math></inline-formula> ones if <inline-formula><tex-math id="M18">\begin{document}$ p $\end{document}</tex-math></inline-formula> is sufficiently large. In contrast, <inline-formula><tex-math id="M19">\begin{document}$ (t_n) $\end{document}</tex-math></inline-formula> is not only essentially balanced but also all longer patterns of length <inline-formula><tex-math id="M20">\begin{document}$ s $\end{document}</tex-math></inline-formula> appear essentially equally often in the vector sequence <inline-formula><tex-math id="M21">\begin{document}$ (t_n,t_{n+1},\ldots,t_{n+s-1}) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M22">\begin{document}$ n = 0,1,\ldots,(p-5)/2 $\end{document}</tex-math></inline-formula>, for any fixed <inline-formula><tex-math id="M23">\begin{document}$ s $\end{document}</tex-math></inline-formula> and sufficiently large <inline-formula><tex-math id="M24">\begin{document}$ p $\end{document}</tex-math></inline-formula>.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献