On the diffusion of the Improved Generalized Feistel

Author:

Baicheva Tsonka,Topalova Svetlana

Abstract

<p style='text-indent:20px;'>We consider the Improved Generalized Feistel Structure (IGFS) suggested by Suzaki and Minematsu (LNCS, 2010). It is a generalization of the classical Feistel cipher. The message is divided into <inline-formula><tex-math id="M1">\begin{document}$ k $\end{document}</tex-math></inline-formula> subblocks, a Feistel transformation is applied to each pair of successive subblocks, and then a permutation of the subblocks follows. This permutation affects the diffusion property of the cipher. IGFS with relatively big <inline-formula><tex-math id="M2">\begin{document}$ k $\end{document}</tex-math></inline-formula> and good diffusion are of particular interest for light weight applications.</p><p style='text-indent:20px;'>Suzaki and Minematsu (LNCS, 2010) study the case when one and the same permutation is applied at each round, while we consider IGFS with possibly different permutations at the different rounds. In this case we present permutation sequences yielding IGFS with the best known by now diffusion for all even <inline-formula><tex-math id="M3">\begin{document}$ k\le 2048 $\end{document}</tex-math></inline-formula>. For <inline-formula><tex-math id="M4">\begin{document}$ k\le 16 $\end{document}</tex-math></inline-formula> they are found by a computer-aided search, while for <inline-formula><tex-math id="M5">\begin{document}$ 18\le k\le 2048 $\end{document}</tex-math></inline-formula> we first consider several recursive constructions of a permutation sequence for <inline-formula><tex-math id="M6">\begin{document}$ k $\end{document}</tex-math></inline-formula> subblocks from two permutation sequences for <inline-formula><tex-math id="M7">\begin{document}$ k_a&lt; k $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M8">\begin{document}$ k_b&lt; k $\end{document}</tex-math></inline-formula> subblocks respectively. Using computer, we apply these constructions to obtain permutation sequences with good diffusion for each even <inline-formula><tex-math id="M9">\begin{document}$ k\le 2048 $\end{document}</tex-math></inline-formula>. Finally we obtain infinite families of permutation sequences for <inline-formula><tex-math id="M10">\begin{document}$ k&gt;2048 $\end{document}</tex-math></inline-formula>.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3