On the diffusion of the Improved Generalized Feistel
-
Published:2022
Issue:1
Volume:16
Page:95
-
ISSN:1930-5346
-
Container-title:Advances in Mathematics of Communications
-
language:
-
Short-container-title:AMC
Author:
Baicheva Tsonka,Topalova Svetlana
Abstract
<p style='text-indent:20px;'>We consider the Improved Generalized Feistel Structure (IGFS) suggested by Suzaki and Minematsu (LNCS, 2010). It is a generalization of the classical Feistel cipher. The message is divided into <inline-formula><tex-math id="M1">\begin{document}$ k $\end{document}</tex-math></inline-formula> subblocks, a Feistel transformation is applied to each pair of successive subblocks, and then a permutation of the subblocks follows. This permutation affects the diffusion property of the cipher. IGFS with relatively big <inline-formula><tex-math id="M2">\begin{document}$ k $\end{document}</tex-math></inline-formula> and good diffusion are of particular interest for light weight applications.</p><p style='text-indent:20px;'>Suzaki and Minematsu (LNCS, 2010) study the case when one and the same permutation is applied at each round, while we consider IGFS with possibly different permutations at the different rounds. In this case we present permutation sequences yielding IGFS with the best known by now diffusion for all even <inline-formula><tex-math id="M3">\begin{document}$ k\le 2048 $\end{document}</tex-math></inline-formula>. For <inline-formula><tex-math id="M4">\begin{document}$ k\le 16 $\end{document}</tex-math></inline-formula> they are found by a computer-aided search, while for <inline-formula><tex-math id="M5">\begin{document}$ 18\le k\le 2048 $\end{document}</tex-math></inline-formula> we first consider several recursive constructions of a permutation sequence for <inline-formula><tex-math id="M6">\begin{document}$ k $\end{document}</tex-math></inline-formula> subblocks from two permutation sequences for <inline-formula><tex-math id="M7">\begin{document}$ k_a< k $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M8">\begin{document}$ k_b< k $\end{document}</tex-math></inline-formula> subblocks respectively. Using computer, we apply these constructions to obtain permutation sequences with good diffusion for each even <inline-formula><tex-math id="M9">\begin{document}$ k\le 2048 $\end{document}</tex-math></inline-formula>. Finally we obtain infinite families of permutation sequences for <inline-formula><tex-math id="M10">\begin{document}$ k>2048 $\end{document}</tex-math></inline-formula>.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory
Reference12 articles.
1. T. Baicheva and S. Topalova, On the diffusion property of the Improved Generalized Feistel with different permutations for each round, in Algebraic Informatics, CAI 2019 (eds. M. Ćirić, M. Droste and J.É. Pin), Lecture Notes in Computer Science, 11545 (2019), 38–49. 2. T. Berger, M. Minier and G. Thomas, Extended generalized Feistel networks using matrix representation, Selected Areas in Cryptography–SAC 2013, Lecture Notes in Comput. Sci., Springer, Heidelberg, 8282 (2014), 289–305. 3. T. Berger, J. Francq, M. Minier, G. Thomas.Extended generalized Feistel networks using matrix representation to propose a new lightweight block cipher: Lilliput, IEEE Transactions on Computers, 65 (2016), 2074-2089. 4. D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B. Koo, C. Lee, D. Chang, J. Lee, K. Jeong, H. Kim, J. Kim, S. Chee.HIGHT: A new block cipher suitable for low-resource device, Lecture Notes in Computer Science - CHES, 4249 (2006), 46-59. 5. K. Nyberg, Generalized Feistel networks, in Advances in Cryptology - ASIACRYPT '96 (eds. K. Kim and T. Matsumoto), Lecture Notes in Computer Science, 1163 (1996), 90–104.
|
|