Author:
Krčadinac Vedran,Kruc Renata Vlahović
Abstract
<p style='text-indent:20px;'>Computational techniques for the construction of quasi-symmetric block designs are explored and applied to the case with <inline-formula><tex-math id="M2">\begin{document}$ 56 $\end{document}</tex-math></inline-formula> points. One new <inline-formula><tex-math id="M3">\begin{document}$ (56,16,18) $\end{document}</tex-math></inline-formula> and many new <inline-formula><tex-math id="M4">\begin{document}$ (56,16,6) $\end{document}</tex-math></inline-formula> designs are discovered, and non-existence of <inline-formula><tex-math id="M5">\begin{document}$ (56,12,9) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M6">\begin{document}$ (56,20,19) $\end{document}</tex-math></inline-formula> designs with certain automorphism groups is proved. The number of known symmetric <inline-formula><tex-math id="M7">\begin{document}$ (78,22,6) $\end{document}</tex-math></inline-formula> designs is also significantly increased.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory,Applied Mathematics,Discrete Mathematics and Combinatorics,Computer Networks and Communications,Algebra and Number Theory
Reference24 articles.
1. T. Beth, D. Jungnickel and H. Lenz, Hanfried Design Theory. Vol. II, 2nd edition, Cambridge University Press, Cambridge, 1999.
2. W. Bosma, J. Cannon, C. Playoust.The Magma algebra system Ⅰ: The user language, J. Symbolic Comput., 24 (1997), 235-265.
3. A. E. Brouwer.The uniqueness of the strongly regular graph on 77 points, J. Graph Theory, 7 (1983), 455-461.
4. A. E. Brouwer.Uniqueness and nonexistence of some graphs related to $M_22$, Graphs Combin., 2 (1986), 21-29.
5. A. R. Calderbank.Geometric invariants for quasisymmetric designs, J. Combin. Theory Ser. A, 47 (1988), 101-110.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Doubly even self-orthogonal codes from quasi-symmetric designs;Applicable Algebra in Engineering, Communication and Computing;2024-06-24
2. Quasi-symmetric \(2\)-\((28,12,11)\) designs with an automorphism of order \(5\);Glasnik Matematicki;2023-12-27
3. Strongly regular configurations;Designs, Codes and Cryptography;2022-07-06
4. A new partial geometry pg(5,5,2);Journal of Combinatorial Theory, Series A;2021-10
5. Non-embeddable quasi-residual quasi-symmetric designs;Applicable Algebra in Engineering, Communication and Computing;2020-10-01