Etiology model for many vaccination adverse reactions, including SARS-CoV-2 spike vaccines

Author:

Ricke Darrell O.

Abstract

<abstract><sec> <title>Objective</title> <p>Vaccinated individuals (vaccinees) experience no adverse events, mild adverse events, multiple adverse events, or serious adverse events post vaccination. Many of these vaccine adverse events occur with different vaccines with different occurrence frequencies. Many of these adverse events are generally considered as associated with immune responses to the active vaccine components (antigens) and/or to possibly one or more of the vaccine excipients. Most of these vaccine adverse events are self-limiting and resolve within days. The number of vaccine adverse reactions is higher for SARS-CoV-2 spike vaccines than all other vaccines. Can data analysis of vaccine adverse reactions responses provide etiology insights for high reactogenicity vaccines?</p> </sec><sec> <title>Methods</title> <p>The Vaccine Adverse Event Reporting System (VAERS) database was data mined for all vaccine adverse events data by vaccine, age, gender, dose, and day of onset post vaccination. Results for vaccines with the highest number of adverse events were compared.</p> </sec><sec> <title>Results</title> <p>For vaccines and adverse events with the highest numbers of reports, the day of onset approximates a power of two decay pattern for the first three days. The consistency of this pattern for multiple unrelated vaccines narrows possible etiology mechanisms. Many of these adverse event symptoms overlap symptoms associated with elevated histamine levels. Herein, innate immune responses and specifically elevated histamine levels are proposed to be causative for the majority of these adverse events. This hypothesis is based on a model of innate immune responses releasing a surge of inflammatory molecules, including histamine; this surge is hypothesized to exceed the normal histamine tolerance level for vaccinees causing reactogenicity adverse events. Further, these symptoms resolve as histamine levels fall below the vaccinee's tolerance threshold. This model can be evaluated by the detection of elevated histamine levels in vaccinees corresponding to timing of symptoms onset. If confirmed, a direct consequence of this model predicts that specific antihistamine treatments, mast cell stabilizers, and possibly diamine oxidase enzyme may reduce the incidence or severity of adverse events experienced by vaccinees post vaccinations for most or all high reactogenicity vaccines including coronavirus disease 2019 (COVID-19) spike vaccines.</p> </sec><sec> <title>Conclusions</title> <p>The reported onset occurrences of the majority of reported adverse events are consistent with the likely etiology of innate immune responses to vaccinations for vaccines with higher reactogenicity levels. Herein, the hypothesis is proposed that the majority of these adverse events result from a histamine surge that temporarily exceeds the vaccinee's tolerance level.</p> </sec></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Engineering,Energy Engineering and Power Technology

Reference30 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3