Abstract
<p style='text-indent:20px;'>The translation of an operator is defined by using conjugation with time-frequency shifts. Thus, one can define <inline-formula><tex-math id="M3">\begin{document}$ \Lambda $\end{document}</tex-math></inline-formula>-shift-invariant subspaces of Hilbert-Schmidt operators, finitely generated, with respect to a lattice <inline-formula><tex-math id="M4">\begin{document}$ \Lambda $\end{document}</tex-math></inline-formula> in <inline-formula><tex-math id="M5">\begin{document}$ \mathbb{R}^{2d} $\end{document}</tex-math></inline-formula>. These spaces can be seen as a generalization of classical shift-invariant subspaces of square integrable functions. Obtaining sampling results for these subspaces appears as a natural question that can be motivated by the problem of channel estimation in wireless communications. These sampling results are obtained in the light of the frame theory in a separable Hilbert space.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference26 articles.
1. A. Aldroubi, Q. Sun, W. S. Tang.Convolution, average sampling, and a Calderon resolution of the identity for shift-invariant spaces, J. Fourier Anal. Appl., 11 (2005), 215-244.
2. J. J. Benedetto, G. E. Pfander.Frame expansions for Gabor multipliers, Appl. Comput. Harmon. Anal., 20 (2006), 26-40.
3. O. Christensen, An Introduction to Frames and Riesz Bases, 2$^nd$ edition, Birkhäuser, Basel, 2016.
4. J. B. Conway, A Course in Operator Theory, American Mathematical Society, Providence, RI, 2000.
5. A. Deitmar and S. Echterhoff, Principles of Harmonic Analysis, 2$^nd$ edition, Universitext, Springer, Cham, 2014.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献