Better degree of approximation by modified Bernstein-Durrmeyer type operators

Author:

Agrawal Purshottam Narain,Güngör Şule Yüksel,Kumar Abhishek

Abstract

<p style='text-indent:20px;'>In the present article we investigate a Durrmeyer variant of the generalized Bernstein-operators based on a function <inline-formula><tex-math id="M1">\begin{document}$ \tau(x), $\end{document}</tex-math></inline-formula> where <inline-formula><tex-math id="M2">\begin{document}$ \tau $\end{document}</tex-math></inline-formula> is infinitely differentiable function on <inline-formula><tex-math id="M3">\begin{document}$ [0, 1], \; \tau(0) = 0, \tau(1) = 1 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ \tau^{\prime }(x)&gt;0, \;\forall\;\; x\in[0, 1]. $\end{document}</tex-math></inline-formula> We study the degree of approximation by means of the modulus of continuity and the Ditzian-Totik modulus of smoothness. A Voronovskaja type asymptotic theorem and the approximation of functions with derivatives of bounded variation are also studied. By means of a numerical example, finally we illustrate the convergence of these operators to certain functions through graphs and show a careful choice of the function <inline-formula><tex-math id="M5">\begin{document}$ \tau(x) $\end{document}</tex-math></inline-formula> leads to a better approximation than the generalized Bernstein-Durrmeyer type operators considered by Kajla and Acar [<xref ref-type="bibr" rid="b11">11</xref>].</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Artificial Intelligence,Computational Mathematics,Computational Theory and Mathematics,Theoretical Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A new variant of the modified Bernstein-Kantorovich operators defined by Özarslan and Duman;Mathematical Foundations of Computing;2024

2. α-Schurer Durrmeyer operators and their approximation properties;Annals of the University of Craiova Mathematics and Computer Science Series;2023-06-30

3. Generalized Ismail-Durrmeyer type operators involving Sheffer polynomials;Mathematical Foundations of Computing;2023

4. Stancu variant of Jakimovski-Leviatan-Durrmeyer operators involving Brenke type polynomials;Mathematical Foundations of Computing;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3