Cesàro summability and Lebesgue points of higher dimensional Fourier series

Author:

Weisz Ferenc

Abstract

<p style='text-indent:20px;'>We give four generalizations of the classical Lebesgue's theorem to multi-dimensional functions and Fourier series. We introduce four new concepts of Lebesgue points, the corresponding Hardy-Littlewood type maximal functions and show that almost every point is a Lebesgue point. For four different types of summability and convergences investigated in the literature, we prove that the Cesàro means <inline-formula><tex-math id="M1">\begin{document}$ \sigma_n^{\alpha}f $\end{document}</tex-math></inline-formula> of the Fourier series of a multi-dimensional function converge to <inline-formula><tex-math id="M2">\begin{document}$ f $\end{document}</tex-math></inline-formula> at each Lebesgue point as <inline-formula><tex-math id="M3">\begin{document}$ n\to \infty $\end{document}</tex-math></inline-formula>.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Medicine

Reference60 articles.

1. J. Arias de Reyna.Pointwise convergence of fourier series, J. London Math. Soc., 65 (2002), 139-153.

2. N. K. Bary, A Treatise on Trigonometric Series, Vols. I, II. Authorized translation by Margaret F. Mullins. A Pergamon Press Book The Macmillan Company, New York 1964.

3. E. S. Belinsky, Summability of multiple Fourier series at Lebesgue points, Teor. Funkci$\mathop l\limits^ \vee $ Funkcional. Anal. i Priložen, 169 (1975), 3–12, (Russian).

4. H. Berens, Z. Li, Y. Xu.On $l_1$ Riesz summability of the inverse Fourier integral, Indag. Math. (N.S.), 12 (2001), 41-53.

5. H. Berens, Y. Xu.Fejér means for multivariate Fourier series, Math. Z., 221 (1996), 449-465.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On The Sets of f-Strongly Cesaro Summable Sequences;KYUNGPOOK MATH J;2024

2. Asymptotic estimates for deviations of Fejér means on Poisson integrals;Proceedings of the Institute of Applied Mathematics and Mechanics NAS of Ukraine;2024-01-23

3. Approximation of classes of Poisson integrals by incomplete Fejér means;The Journal of Analysis;2023-12-21

4. Fourier Series Approximation in Besov Spaces;Journal of Mathematics;2023-07-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3