Abstract
<p style='text-indent:20px;'>In this paper, we consider the following Schrödinger-Poisson equation</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \left\{\begin{aligned} &-\triangle u + u + \phi u = u^{5}+\lambda g(u), &\hbox{in}\ \ \Omega, \\\ & -\triangle \phi = u^{2}, & \hbox{in}\ \ \Omega, \\\ & u, \phi = 0, & \hbox{on}\ \ \partial\Omega.\end{aligned}\right. $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is a bounded smooth domain in <inline-formula><tex-math id="M2">\begin{document}$ \mathbb{R}^{3} $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ \lambda>0 $\end{document}</tex-math></inline-formula> and the nonlinear growth of <inline-formula><tex-math id="M4">\begin{document}$ u^{5} $\end{document}</tex-math></inline-formula> reaches the Sobolev critical exponent in three spatial dimensions. With the aid of variational methods and the concentration compactness principle, we prove the problem admits at least two positive solutions and one positive ground state solution.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Artificial Intelligence,Computational Mathematics,Computational Theory and Mathematics,Theoretical Computer Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献