Surface modification of coatings based on Ni-Cr-Al by pulsed plasma treatment

Author:

Yeskermessov Didar12,Rakhadilov Bauyrzhan3,Zhurerova Laila3,Apsezhanova Akbota1,Aringozhina Zarina12,Booth Matthew2,Tabiyeva Yerkezhan12

Affiliation:

1. Department of Physics, East Kazakhstan Technical University, Ust-Kamenogorsk, Kazakhstan

2. School of Mathematics and Physics, University of Lincoln, Lincoln, United Kingdom

3. PlasmaScience LLP, Ust-Kamenogorsk, Kazakhstan

Abstract

<abstract> <p>To protect materials from abrasion-corrosion, various thermal spraying methods can be used to apply coatings, such as gas-flame powder spraying, plasma spraying, high velocity oxygen-fuel spraying and detonation cannon. Thermal spraying is one of the most effective methods of protecting the material from wear and corrosion, thereby increasing the service life of the material used. We present the surface modification of coatings based on Ni-Cr-Al by a pulsed plasma treatment using a plasma generator. The coatings were obtained by detonation spraying followed by pulsed plasma treatment. The changes to the structural properties of the coatings under the influence of plasma flow were studied using scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. The mechanical and tribological properties were analyzed by surface roughness characterization, microhardness testing and tribological tests for a comprehensive analysis of changes in the characteristics of the Ni-Cr-Al coatings following pulsed plasma treatment. It was found that modification of the coating by pulsed plasma treatment causes an increase in the microhardness of the surface layer, as well as a reduction in the surface roughness and friction coefficient. According to the results of X-ray phase analysis, these improvements in the mechanical and tribomechanical properties of the obtained surfaces is associated with an increase in the content of CrNi<sub>3</sub>, NiAl and NiCr phases in the coatings.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3