Magnetic characteristics of sengon wood-impregnated magnetite nanoparticles synthesized by the co-precipitation method

Author:

Fadia Saviska Luqyana1,Rahayu Istie1,Nawawi Deded Sarip1,Ismail Rohmat2,Prihatini Esti1,Laksono Gilang Dwi1,Wahyuningtyas Irma1

Affiliation:

1. Department of Forest Products, Faculty of Forestry and Environment, IPB University, Bogor 16680, Indonesia

2. Department of Chemistry, Faculty of Mathematics and Natural Science, IPB University, Bogor 16680, Indonesia

Abstract

<abstract> <p>This study was conducted to synthesize magnetic wood through the ex situ impregnation method of magnetite nanoparticles and analyze its physical properties and characterization. The process was initiated with the synthesis of magnetite nanoparticles by the co-precipitation method and the nano-magnetite was successfully synthesized with a particle distribution of 17–233 nm at an average size of 75 nm. Furthermore, the impregnation solution consisted of three different levels of magnetite nanoparticles dispersed in furfuryl alcohol, untreated and furfurylated wood for comparison. Sengon wood (<italic>Falcataria moluccana</italic> Miq.) was also used due to its low physical properties. The impregnation process was conducted by immersing the samples in the solution at a vacuum of −0.5 bar for 30 min, followed by a pressure of 1 bar for 2 h. There was also an improvement in the physical properties, such as weight percent gain, bulking effect, anti-swelling efficiency and density, while the water uptake continued to decrease. Additionally, magnetite nanoparticles appeared in wood microstructure image, supported by the result of ferrum content in chemical element analysis. The results showed that chemical change analysis proved the presence of Fe–O functional group cross-linked with wood polymer. The diffractogram also reported the appearance of magnetite nanoparticles peak and a decrease in crystallinity due to an increase in the concentration. Based on the analysis, sengon wood was classified as a superparamagnetic material with soft magnetic characteristics and the optimum treatment was furfurylated-magnetite 12.5% wood.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3