Lateral growth of xenon hydrate films on mica

Author:

Both Avinash Kumar, ,Cheung Chin Li

Abstract

<abstract> <p>In this paper, we report an <italic>in situ</italic> optical microscopy study of lateral growth of xenon (Xe) hydrate thin films on mica at sub-zero temperatures. The interactions between a solid surface and water molecules can strongly affect the alignment of water molecules and induce ice-like ordered structures within the water layer at the water-surface interface. Mica was chosen as a model surface to study the surface effect of hydrophilic sheet silicates on the lateral growth of Xe hydrate films. Under the experimental conditions, the lateral growth of Xe hydrate films was measured to be at an average rapid rate of ~200 μm/s and 400 μm/s under two different pressures of Xe. Mass transfer estimation of the Xe-water system revealed that the increasing trend of lateral film growth rates followed the increase in the net mass flux and aqueous solubility of Xe. However, as the supercooling temperature increased, the trend of lateral film growth rates attained a plateau region where little change in the rate was observed. This unique feature in the lateral film growth trend, the fast lateral growth kinetics, and the short induction time for hydrate film growth hinted at the assistance of the mica surface to aid the lateral growth process of Xe hydrate films at low Xe mass flux and at a low degree of subcooling. A mechanism based on the reported structured water layer at the interface on mica was proposed to rationalize a postulated surface-promotional effect of mica on the nucleation and lateral growth kinetics of Xe hydrate films.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3