Characterization of the hybrid joint between AA2024-T3 alloy and thermoplastic composite obtained by oxy-fuel welding (OFW)

Author:

Lucas Rafael Resende1,de Cássia Mendonça Sales-Contini Rita2,Marques Luis Felipe Barbosa1,Reis Jonas Frank1,Abrahão Ana Beatriz Ramos Moreira3,Botelho Edson Cocchieri1,Mota Rogério Pinto1

Affiliation:

1. São Paulo State University (UNESP), School of Engineering and Sciences, Guaratinguetá, São Paulo 12516-410, Brazil

2. Aeronautical Structures Laboratory, Technological College of São José dos Campos Prof. Jessen Vidal (FATEC), São José dos Campos, São Paulo 12247-014, Brazil

3. Electrochemistry and Corrosion Laboratory, Technological College of Pindamonhangaba (FATEC), Pindamonhangaba, São Paulo 12445-010, Brazil

Abstract

<abstract> <p>Studies on dissimilar materials joining have greatly increased, transitioning from temporary to permanent joining methods. The latter approach is more applicable due to the hybrid structure offering the best properties of the constituent materials, along with the development of new materials and manufacturing procedures. In this study, the AA2024-T3 alloy was treated with plasma electrolytic oxidation (PEO) and a thermoplastic composite/AA2024-T3 hybrid joint was manufactured using oxy-fuel welding (OFW). Morphological aspects, chemical compositions electrochemical and mechanical properties of hybrid composite joints were determined. The results indicated that the joint exhibits a uniform structure. The adhesion between the dissimilar materials reached a strength of 4.2 to 5.2 MPa, with cohesive bonding and without severe degradation of the thermoplastic matrix in some cases. It was observed that PEO treatment decreased the interface shear strength due to the high silicon content presence in the coating. The coatings effectively increased nobility and corrosion resistance, with corrosion rates ranging from 0.0087 to 0.018 mm/year.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3